3.108 \(\int \frac{x (a+b \cosh ^{-1}(c x))}{\sqrt{d-c^2 d x^2}} \, dx\)

Optimal. Leaf size=72 \[ -\frac{\sqrt{d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d}-\frac{b x \sqrt{c x-1} \sqrt{c x+1}}{c \sqrt{d-c^2 d x^2}} \]

[Out]

-((b*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2])) - (Sqrt[d - c^2*d*x^2]*(a + b*ArcCosh[c*x]))/(c^
2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.210074, antiderivative size = 80, normalized size of antiderivative = 1.11, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {5798, 5718, 8} \[ -\frac{(1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt{d-c^2 d x^2}}-\frac{b x \sqrt{c x-1} \sqrt{c x+1}}{c \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

-((b*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(c*Sqrt[d - c^2*d*x^2])) - ((1 - c*x)*(1 + c*x)*(a + b*ArcCosh[c*x]))/(c^
2*Sqrt[d - c^2*d*x^2])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rule 5718

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_
Symbol] :> Simp[((d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2*e1*e2*(p + 1)), x] - Dist[
(b*n*(-(d1*d2))^IntPart[p]*(d1 + e1*x)^FracPart[p]*(d2 + e2*x)^FracPart[p])/(2*c*(p + 1)*(1 + c*x)^FracPart[p]
*(-1 + c*x)^FracPart[p]), Int[(-1 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c,
 d1, e1, d2, e2, p}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[n, 0] && NeQ[p, -1] && IntegerQ[p + 1
/2]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{x \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt{d-c^2 d x^2}} \, dx &=\frac{\left (\sqrt{-1+c x} \sqrt{1+c x}\right ) \int \frac{x \left (a+b \cosh ^{-1}(c x)\right )}{\sqrt{-1+c x} \sqrt{1+c x}} \, dx}{\sqrt{d-c^2 d x^2}}\\ &=-\frac{(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt{d-c^2 d x^2}}-\frac{\left (b \sqrt{-1+c x} \sqrt{1+c x}\right ) \int 1 \, dx}{c \sqrt{d-c^2 d x^2}}\\ &=-\frac{b x \sqrt{-1+c x} \sqrt{1+c x}}{c \sqrt{d-c^2 d x^2}}-\frac{(1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{c^2 \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [A]  time = 0.158515, size = 85, normalized size = 1.18 \[ \frac{\sqrt{d-c^2 d x^2} \left (-a c^2 x^2+a+\left (b-b c^2 x^2\right ) \cosh ^{-1}(c x)+b c x \sqrt{c x-1} \sqrt{c x+1}\right )}{c^2 d (c x-1) (c x+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*ArcCosh[c*x]))/Sqrt[d - c^2*d*x^2],x]

[Out]

(Sqrt[d - c^2*d*x^2]*(a - a*c^2*x^2 + b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x] + (b - b*c^2*x^2)*ArcCosh[c*x]))/(c^2
*d*(-1 + c*x)*(1 + c*x))

________________________________________________________________________________________

Maple [B]  time = 0.15, size = 158, normalized size = 2.2 \begin{align*} -{\frac{a}{{c}^{2}d}\sqrt{-{c}^{2}d{x}^{2}+d}}+b \left ( -{\frac{-1+{\rm arccosh} \left (cx\right )}{2\,{c}^{2}d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) } \left ( \sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ) }-{\frac{1+{\rm arccosh} \left (cx\right )}{2\,{c}^{2}d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) } \left ( -\sqrt{cx+1}\sqrt{cx-1}xc+{c}^{2}{x}^{2}-1 \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x)

[Out]

-a/c^2/d*(-c^2*d*x^2+d)^(1/2)+b*(-1/2*(-d*(c^2*x^2-1))^(1/2)*((c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*(-1+a
rccosh(c*x))/c^2/d/(c^2*x^2-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(-(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+c^2*x^2-1)*(1+arcc
osh(c*x))/c^2/d/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [A]  time = 1.17786, size = 85, normalized size = 1.18 \begin{align*} \frac{b \sqrt{-d} x}{c d} - \frac{\sqrt{-c^{2} d x^{2} + d} b \operatorname{arcosh}\left (c x\right )}{c^{2} d} - \frac{\sqrt{-c^{2} d x^{2} + d} a}{c^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="maxima")

[Out]

b*sqrt(-d)*x/(c*d) - sqrt(-c^2*d*x^2 + d)*b*arccosh(c*x)/(c^2*d) - sqrt(-c^2*d*x^2 + d)*a/(c^2*d)

________________________________________________________________________________________

Fricas [A]  time = 2.08748, size = 236, normalized size = 3.28 \begin{align*} \frac{\sqrt{-c^{2} d x^{2} + d} \sqrt{c^{2} x^{2} - 1} b c x -{\left (b c^{2} x^{2} - b\right )} \sqrt{-c^{2} d x^{2} + d} \log \left (c x + \sqrt{c^{2} x^{2} - 1}\right ) -{\left (a c^{2} x^{2} - a\right )} \sqrt{-c^{2} d x^{2} + d}}{c^{4} d x^{2} - c^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="fricas")

[Out]

(sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*b*c*x - (b*c^2*x^2 - b)*sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 -
1)) - (a*c^2*x^2 - a)*sqrt(-c^2*d*x^2 + d))/(c^4*d*x^2 - c^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x \left (a + b \operatorname{acosh}{\left (c x \right )}\right )}{\sqrt{- d \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(1/2),x)

[Out]

Integral(x*(a + b*acosh(c*x))/sqrt(-d*(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \operatorname{arcosh}\left (c x\right ) + a\right )} x}{\sqrt{-c^{2} d x^{2} + d}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(1/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)*x/sqrt(-c^2*d*x^2 + d), x)